Python绘图

Python有很多可视化工具,本篇只介绍Matplotlib和Seaborn。

Matplotlib

针对python不显示汉字解决方案
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif’]=[‘SimHei’]

  • 在绘图结构中,figure创建窗口,subplot创建子图。
  • 所有的绘画只能在子图上进行。plt表示当前子图,若没有就创建一个子图。
  • Figure:面板(图),matplotlib中的所有图像都是位于figure对象中,一个图像只能有一个figure对象。
  • Subplot:子图,figure对象下创建一个或多个subplot对象(即axes)用于绘制图像。

配置参数

  • figure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置
  • font: 字体集(font family)、字体大小和样式设置
  • grid: 设置网格颜色和线性
  • legend: 设置图例和其中的文本的显示
  • line: 设置线条(颜色、线型、宽度等)和标记
  • savefig: 可以对保存的图形进行单独设置。例如,设置渲染的文件的背景为白色。
  • xticks和yticks: 为x,y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。

线条相关属性标记设置

  • 线形:linestyle或ls
  • ‘-‘ : 实线
  • ‘—‘ : 虚线
  • ‘None’,’ ‘,’’ : 什么都不画
  • ‘-.’ : 点划线
  • 点型:maker
  • ‘o’ :圆圈
  • ‘.’ :点
  • ‘D’ :菱形
  • ‘s’ :正方形
  • ‘h’ :六边形1
  • ‘*’ :星号
  • ‘H’ :六边形2
  • ‘d’ :小菱形
  • ‘_’ :水平线
  • ‘v’ :一角朝下的三角形
  • ‘8’ :八边形
  • ‘<’ :一角朝左的三角形
  • ‘p’ :五边形
  • ‘>’ :一角朝右的三角形
  • ‘,’ :像素
  • ‘^’ :一角朝上的三角形
  • ‘+’ :加号
  • ‘’ :竖线
  • ‘None’,’ ‘,’’ : 无
  • ‘x’ :X

颜色
b:蓝色
g:绿色
r:红色
y:黄色
c:青色
k:黑色
m:洋红色
w:白色

线图 plot()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文显示问题-设置字体为黑体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题

x = np.arange(-2*np.pi, 2*np.pi, 0.01)
y1 = np.sin(x)
y2 = np.cos(x)
plt.figure(figsize=(10, 7))
plt.plot(x, y1 ,'r-',label='$sinx$')
plt.plot(x, y2 ,'b--',label='$cosx$')
plt.legend(loc='upper right')
plt.xlim(-2*np.pi-1, 2*np.pi+3)
plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi], ['$-2\pi$', '$-\pi$', '$0$', '$\pi$', '$2\pi$'])
plt.title('三角-函数')
plt.xlabel('横坐标')
plt.ylabel('纵坐标')
plt.axhline(y=0, c='black')
plt.show()

1

plot()参数

  • plot([x], y, [fmt], data=None, **kwargs)
  • 可选参数[fmt] 是一个字符串来定义图的基本属性如:颜色(color),点型(marker),线型(linestyle),
  • 具体形式 fmt = ‘[color][marker][line]’
  • fmt接收的是每个属性的单个字母缩写,例如:
  • plot(x, y, ‘bo-‘) # 蓝色圆点实线

散点图

1
2
3
4
5
6
7
8
9
10
11
12
13
# 散点图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文
fig = plt.figure(figsize=(6,5))
x = [1.5, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]
y = [6, 7, 8, 5, 9, 4, 9.5, 3, 9.5, 2, 9]
x1 = [6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10.5, 11, 11]
y1 = [1, 8, 2, 9, 3, 9, 4, 9.5, 5, 9, 6, 7, 8]
plt.scatter(x, y, color='r', label='左心房')
plt.scatter(x1, y1, color='b', label='右心房')
plt.title('love')
plt.legend()
plt.show()

2

条形图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import matplotlib
import matplotlib.pyplot as plt
import numpy as np

labels = ['Monday','Tuesday','Friday','Sunday']
men_means = [1.5,0.6,7.8,6]
women_means = [1,2,3,1]

x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, men_means, width, label='boy')
rects2 = ax.bar(x + width/2, women_means, width, label='girl')

# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Scores') #标题
ax.set_title('Scores by group and gender') #标题
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()


def autolabel(rects):
"""Attach a text label above each bar in *rects*, displaying its height."""
for rect in rects:
height = rect.get_height()
ax.annotate('{}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')


autolabel(rects1)
autolabel(rects2)
fig.tight_layout()
plt.show()

3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import matplotlib
import matplotlib.pyplot as plt
import numpy as np

labels = ['Monday','Tuesday','Friday']
men_means = [1.5,0.6,7]
women_means = [1,2,3]
child=[1,1,2]

x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - 3*width/4, men_means, 3*width/4, label='boy')
rects2 = ax.bar(x, women_means,3*width/4, label='girl')
rects3 = ax.bar(x + 3*width/4, child, 3*width/4, label='child')

# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Scores') #标题
ax.set_title('Scores by group and gender') #标题
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()

def autolabel(rects):
"""Attach a text label above each bar in *rects*, displaying its height."""
for rect in rects:
height = rect.get_height()
ax.annotate('{}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')

autolabel(rects1)
autolabel(rects2)
autolabel(rects3)

fig.tight_layout()
plt.show()

Figure_1

直方图

直方图与条形图基本类似,不过直方图通常用来对单个数据的单一属性进行描述,而不是用于比较

  • data:必选参数,绘图数据
  • bins:直方图的长条形数目,可选项,默认为10 normed:是否将得到的直方图向量归一化,可选项,默认为0,代表不归一化,显示频数。normed=1,表示归一化,显示频率。
  • facecolor:长条形的颜色
  • edgecolor:长条形边框的颜色
  • alpha:透明度
1
2
3
4
5
6
7
8
9
10
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文显示
plt.rcParams['axes.unicode_minus']=False # 正常显示负号
import numpy as np
data = np.random.randn(10000)
plt.hist(data, bins=40, normed=0, facecolor='blue', edgecolor='black', alpha=0.7)
plt.xlabel('区间')
plt.ylabel('频数')
plt.title('频数分布直方图')
plt.show()

4

饼图

  • x :(每一块)的比例,如果sum(x) > 1会使用sum(x)归一化;
  • labels :(每一块)饼图外侧显示的说明文字;
  • explode :(每一块)离开中心距离;
  • startangle :起始绘制角度,默认图是从x轴正方向逆时针画起,如设定=90则从y轴正方向画起;
  • shadow :在饼图下面画一个阴影。默认值:False,即不画阴影;
  • autopct :控制饼图内百分比设置,可以使用format字符串或者format function ‘%1.1f’指小数点前后位数(没有用空格补齐);
1
2
3
4
5
6
7
8
9
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文显示
plt.rcParams['axes.unicode_minus']=False # 正常显示负号
labels = ['育儿','饮食','房贷','其他']
x = [5,12,50,9]
explode = (0,0,0.01,0) #0.01调整中间空格大小
plt.pie(x,labels=labels,explode=explode,autopct='%1.1f%%')
plt.title('家庭支出比例')
plt.show()

5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal"))

recipe = ["375 g flour",
"75 g sugar",
"250 g butter",
"300 g berries"]

data = [float(x.split()[0]) for x in recipe]
ingredients = [x.split()[-1] for x in recipe]


def func(pct, allvals):
absolute = int(pct/100.*np.sum(allvals))
return "{:.1f}%\n({:d} g)".format(pct, absolute)


wedges, texts, autotexts = ax.pie(data, autopct=lambda pct: func(pct, data),
textprops=dict(color="w"))

ax.legend(wedges, ingredients,
title="Ingredients",
loc="center left",
bbox_to_anchor=(1, 0, 0.5, 1))

plt.setp(autotexts, size=8, weight="bold")
ax.set_title("Matplotlib bakery: A pie")
plt.show()

6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal"))

recipe = ["225 g flour",
"90 g sugar",
"1 egg",
"60 g butter",
"100 ml milk",
"1/2 package of yeast"]

data = [225, 90, 50, 60, 100, 5]

wedges, texts = ax.pie(data, wedgeprops=dict(width=0.5), startangle=-40)

bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72)
kw = dict(arrowprops=dict(arrowstyle="-"),
bbox=bbox_props, zorder=0, va="center")

for i, p in enumerate(wedges):
ang = (p.theta2 - p.theta1)/2. + p.theta1
y = np.sin(np.deg2rad(ang))
x = np.cos(np.deg2rad(ang))
horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))]
connectionstyle = "angle,angleA=0,angleB={}".format(ang)
kw["arrowprops"].update({"connectionstyle": connectionstyle})
ax.annotate(recipe[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),
horizontalalignment=horizontalalignment, **kw)

ax.set_title("Matplotlib bakery: A donut")

plt.show()

7

Seaborn

线图plot()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体设置-黑体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
sns.set(font='SimHei') # 解决Seaborn中文显示问题

x = np.arange(-2*np.pi, 2*np.pi, 0.01)
y1 = np.sin(x)
y2 = np.cos(x)
plt.figure(figsize=(10, 7))
plt.plot(x, y1,'r-',label='$sinx$')
plt.plot(x, y2,'b--',label='$cosx$')
plt.legend(loc='upper right')
plt.xlim(-2*np.pi-1, 2*np.pi+3)
plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi], ['$-2\pi$', '$-\pi$', '$0$', '$\pi$', '$2\pi$'])
plt.title('三角-函数')
plt.xlabel('横坐标')
plt.ylabel('纵坐标')
plt.axhline(y=0, c='black')
plt.show()

11

直方图

1
2
3
4
5
6
7
8
9
10
11
12
13
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文显示
plt.rcParams['axes.unicode_minus']=False # 正常显示负号
sns.set(font='SimHei') # 解决Seaborn中文显示问题
np.random.seed(sum(map(ord, "distributions")))
x = np.random.normal(size=100)
sns.distplot(x)
plt.xlabel('区间')
plt.ylabel('频数')
plt.title('频数分布直方图')
plt.show()

4

本文标题:Python绘图

文章作者:TJYS

发布时间:2020年11月19日 - 08:55:33

最后更新:2021年01月20日 - 19:19:00

原始链接:https://qikaile.us/Python-matplotlib-Seaborn.html

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

-------------------本文结束 感谢您的阅读-------------------
0%